

 Navigation

 	
 index

 	
 next |

 	Aldryn Boilerplate Standard 3.0.5 documentation

Welcome

The most advanced django-cms based boilerplate for rapid development. It uses the full potential of the
Bootstrap [http://getbootstrap.com/] framework for developing responsive, mobile first projects on the web.
In addition we implement various best practices [http://aldryn-boilerplate-bootstrap3.readthedocs.org/en/latest/general/best-practices.html] from within the front-end community.

This boilerplate is compatible with Aldryn [http://www.aldryn.com/].

The latest stable versions is available on GitHub - https://github.com/aldryn/aldryn-boilerplate-bootstrap3

Documentation

	General
	Requirements

	Best Practices

	Folder Structure

	Comments

	Markup
	Guidelines

	Structure

	Reference

	Stylesheets
	Guidelines

	Structure

	Reference

	Mistakes

	Images
	Optimization

	JavaScript
	Guidelines

	Structure

	Reference

Contribution

	Contribution

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

General

This chapter provides general information about:

	Requirements
	Optional

	Best Practices
	Naming

	Automation

	Bootstrap Plugins

	Browsers

	Editors

	Icons

	Libraries

	Documentation

	Tests

	Folder Structure
	private/

	static/

	templates/

	Comments
	Sections

	Notes

	HTML

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	General

Requirements

The following software should be installed on your system in order to use this boilerplate:

	Sass: http://sass-lang.com/

	Compass: http://compass-style.org/

	Bootstrap: https://github.com/twbs/bootstrap-sass

You can compile/watch using compass watch private from within the root.

Optional

We provide some automation using the Gulp [http://gulpjs.com/] task runner.
You will need the following requirements in order to use it:

	Node JS: http://nodejs.org/

	Node Package Manager: https://www.npmjs.org/

	Bower: http://bower.io/

	Gulp JS: http://gulpjs.com/

After all requirements are met, install the packages using the npm install command from within the boilerplate’s
root. You can install the bower requirements by running bower install.

You can run Gulp commands from within your base folder using gulp. If you would like to
run specific tasks, consult the gulpfile.js within the base folder.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	General

Best Practices

Naming

“There are only two hard things in Computer Science:
cache invalidation and naming things
– Phil Karlton”

As you can spend hours in scheming name patterns, structure and conventions we only advice to follow the
BEM principles [https://bem.info/] but using as a separator one dash only and always
lowercase format: blockname-elementname.

Automation

We try to make our live as easy as possible. For this reason we implemented Gulp JS [http://gulpjs.com/] as task
runner instead of Grunt as we prefer code over configuration. There are some helpful commands available:

	gulp runs gulp lint browser and watch commands

	gulp lint lints all JavaScript using .jshintrc and .jscsrc

	gulp docs generates JavaScript API documentation into static/docs

	gulp images optimised images within /static/img

	gulp browser connects to a given server (django) and runs livereload on http://0.0.0.0:3000

	gulp watch starts a watch command for linting

Bootstrap Plugins

We are implementing the following additional Bootstrap plugins into the setup:

	Select2 [http://fk.github.io/select2-bootstrap-css/]

	Cl.Debug [http://finalangel.github.io/classjs-plugins/examples/cl.debug/]

Browsers

In order to display an automated message when JavaScript is disabled or there might be lack of support, we integrated
the Outdated Browser [http://outdatedbrowser.com/en] script within this boilerplate. Styles and settings are
automatically set from within Bootstrap.

Editors

You can use any editor you want, to make your life a bit easier we implemented EditorConfig [http://editorconfig.org/]
into the boilerplate’s root .editorconfig.

Icons

We integrated the Font Awesome [http://fortawesome.github.io/Font-Awesome/] library in addition of Bootstrap’s
Glyphicons [http://getbootstrap.com/components/#glyphicons] icons while disabling the Glyphicons as a default.
You can reanable them within the `according settings<https://github.com/aldryn/aldryn-boilerplate-bootstrap3/blob/develop/private/sass/libs/_bootstrap.scss#L14>`_.

Libraries

We are implementing the following standard libraries in addition to the default requirements from Bootstrap:

	Class JS [https://github.com/FinalAngel/classjs]

	Respond JS [https://github.com/scottjehl/Respond]

	SWF Object [https://code.google.com/p/swfobject/]

	HTML5 Shiv [https://code.google.com/p/html5shiv/]

We implemented Bower [http://bower.io/] to help you manage dependencies. Packages are automatically downloaded into
/static/vendor/ but not moved to their appropriate folders. This still requires manual work.

Documentation

We write API documentation using the YUIDoc [http://yui.github.io/yuidoc/] syntax. For HTML and CSS please refer
to the styleguide.

Tests

We currently implemented a basic test framework within static/js/tests using QUnit. YOu can simply run tests
using the Gulp command gulp tests.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	General

Folder Structure

The generic folder structure is as follows:

private/

This folder is intended for placing preprocessing libraries such as sass, coffeescript or haml.
Simply create a folder with the associated name of the library such as sass/ and place configuration files on the
same level. An example structure would look like:

private/
├─ sass/
│ └─ base.sass
└─ config.rb

Hint

The config.rb is taken from Compass [http://compass-style.org/] which can also be used for a native sass
setup. However aldryn-boilerplate-bootstrap3 uses the Compass SCSS - format as default.

static/

All layout specific files will be placed in this folder. The main folder structure includes:

static/
├─ css/
├─ fonts/
├─ img/
├─ js/
└─ swf/

If folders are not required, just simply remove them. For demo content (which might be later integrated as media files)
create a folder called dummy/, for example: static/img/dummy/ and place those images there.
The dummy folder is intended to be removed before a website goes live.

When a structure might get more complicated, make use of grouping and create additional folders like
static/img/icons or static/js/addons/jquery.

templates/

All Django templates should be allocated within the templates/ folder. This also applies for apps or inclusion
files. When using Haml [http://haml.info/], set your configuration so the templates get compiled into
/templates/.

The default index.html is always templates/base.html.

Global inclusion files are placed within templates/includes/. Addons normally have their own includes/ folder
so they are not overcrowding the global folder.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	General

Comments

Use comments wisely. Ideally every major feature should commented in detail, but time-restraints and budget prevent
this often. However it does not make sense to comment the obvious. Use specific separators to structure code that
it is more readable.

Sections

The long block comment is used to separate sections, for example the mobile/tablet/desktop separation within scss or
base.js.

//##
// #NAME#

Use the half version of this to separate larger modules or code blocks so its more readable and parts can be found
quickly:

//###
// #NAME#

The large comment block should be exactly 120 characters long.

Otherwise use normal inline // comments or block /* comments */ whenever it is more logical.

Notes

We also support three types of comments within the code itself:

TODO:

indicates that something is still missing and needs to be done

// TODO: We still need to add keyboard navigation

INFO:

provides additional help if something might be unclear or requires additional description

// INFO: We had to loop twice through the element as the provided data is nested multiple times

DOCS:

provides a simple docs link

// DOCS: https://django-cms.readthedocs.org/en/latest/

HTML

Use the django or jinja template comments rather than the native html ones in order to hide developers notes
from the live production website when the HTML gets shipped.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

Markup

This chapter describes in more detail what the html markup guidelines are, how they are structured and what
the requirements are:

	Guidelines

	Structure

	Reference

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	Markup

Guidelines

	Use 4 space indentation and not tabs

	Use underscores for html file naming

	Use double-quotes “ for all attributes including django-template tags

	Use lowercase for all attributes

	HTML has to validate using W3C [http://www.w3.org/2001/sw/BestPractices/] guidelines

	HTML should validate the WCAG 2.0 A guidelines

	HTML should be modular and reusable, do not use easy names like “job” or “item” on top level. Use “addon-jobs” instead

	Always use space indendation after django tags such as {% if %}, {% forloop %}, {% block ... %} and others

	Ignore to rule on top for {% if %} or {% forloop %}

	All templates should be placed within the roots templates/ folder

	In general code readability first

Example

{% block content %}
<div class="plugin-blog">
{% if true %}
 <p>Hello World</p>
{% endif %}
</div>
{% endblock content %}

{% addtoblock "js" %}<script src="{% static "js/libs/class.min.js" %}"></script>{% endaddtoblock %}
{% addtoblock "js" %}
<script>
jQuery(document).ready(function ($) {
 alert('hello world');
});
</script>
{% endaddtoblock %}

IDs vs Classes

You should always use classes instead if id’s. Classes represent a more OOP approach of adding and removing
style sets like box box-wide box-hint.

Try to avoid declaring ID’s at all. They should only be used to reference elements or for in-page navigation such as:
<label for="field-username">..</label><input type="text" id="field-username" /> or /some/url#whats-new

Elements

Try to keep the html structure simple and avoid unnecessary elements. It is sometimes easier to use a single div with
a single class rather than multiple divs with multiple classes:

<div class="addon-blog">
 <h2>My Blog</h2>
 <p>Hello World</p>
</div>

We don’t need to add specific classes to the h2 as we can control the inner style using .addon-blog. However
more complicated structures such as lead, content, author, meta infos, tags can require their own class names:

<div class="addon-blog">
 <h2>My Blog</h2>
 <p class="blog-lead">Hello World</p>
 <div class="blog-content">
 <h3>Details</h3>
 <p>More</p>
 <p>Content</p>
 </div>
 <div class="blog-author">Dummy Man</div>
 <ul class="blog-tags tags">
 News
 Blog
 Tags

</div>

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	Markup

Structure

Django automatically looks for a base.html yet our base extends base_root.html. This is a good example of how
Django’s template inheritance is working. In order to keep the basic html structure minimalistic, we outsource
all head and foot relevant code into base_html which makes this file better maintainable.

Where to start

Build your general structure within base.html. This includes namely the header and the footer.
Do not split up header and footer into separate files, you can use django blocks and overwrite default
behaviours when needed. Additional structure should be defined within the CMS templates:

Content Management

Within setting.py we can define so called Templates which are than available over django CMS toolbars
Page > Templates UI. These templates can have a different structures. In the boilerplate there are four
predefined templates:

	fullsize.html

	sidebar_left.html

	sidebar_right.html

	tpl_home.html

When choosing a name, be descriptive about their uses as the customer can set them by himself. If I would add a more
narrow header option for fullsize, I would simply call it fullsize_simple.html.

Menu

All menu relevant templates are kept within templates/includes/menu/*.html. These display what classes are used
to render a navigation, breadcrumb or even the pagenav.

Messages

You need to be aware of the django message framework [https://docs.djangoproject.com/en/dev/ref/contrib/messages/]
which displays global notifications or error messages. This file is kept within templates/includes/messages.html
and included within templates/base.html.

Analytics

Store all analytics code within the designated file in templates/includes/analytics.html which will be injected
right after the opening <body> tag. Google Analytics is already pre-prepared and will be shown when adding
the required UA-XXXXX code within the CMS.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	Markup

Reference

We use a combination of various frontend libraries to create a fast and robust boilerplate.

Normalize

	http://necolas.github.io/normalize.css/

Bootstrap

	http://getbootstrap.com

SASS/SCSS

	http://sass-lang.com/

	http://compass-style.org/

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

Stylesheets

This chapter describes in more detail what the css guidelines are, how they are structured and what
the requirements are:

	Guidelines

	Structure

	Reference

	Mistakes

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	Stylesheets

Guidelines

	Use 4 space indentation and not tabs

	Use underscores for scss file naming

	Use double-quotes " for all text values

	Use dashes to separate class/id names, not camelCase or underscore

	Do not overuse nesting! If you got only one instance, use one line

	Always add a space after the colon

	Only write one css property per line

	Keep sass/layout/ clean and use the available structure

	Use sass/sites/ for theme based or specific styles

	Define settings within sass/settings/

	Avoid referencing css using their parent like div.container

	Use shorthands for values like #ccc or white

	Use full words instead of shorthands like number instead of nr

	Avoid using universal selectors for maintainability/performance reasons

	Use progressive enhancement whenever possible

	Validation is not required but nice

Style

Use block-style and group elements underneath:

	includes (compass includes)

	extending

	visibility, position

	color, font-size, line-height, font-* (font relevant data)

	width, height, padding, margin (box model relevant date)

	border, background (box style data)

	media, print (media queries)

	:after, :before, :active (pseudo elements)

Combine attributes such as background-image, background-color, background-repeat into
background: #fff url("image.png") no-repeat left top;.

Also ensure combined css selectors are always on a new line.

Example

.addon-blog {
 // mixins
 @include border-radius(3px);
 @include box-shadow(0 0 2px #eee);
 // extending
 @extend .list-unstyled;
 // styles
 display: inline;
 position: relative;
 z-index: 1;
 color: white;
 font-size: 16px;
 line-height: 20px;
 width: 80%;
 height: 80%;
 padding: 5px;
 margin: 0 auto;
 border: 2px solid #ccc;
 background: #ddd;
 // desktop and up
 @media (min-width: $screen-md-min) {
 display: block;
 }
 // pseudo elements
 &:active,
 &:hover {
 color: black;
 }
}

Nesting

With great power comes great responsibility (just wanted to throw that in here). When writing in sass or less we
sometimes forget performance over laziness. While nesting is very powerful, we should avoid unnecessary levels or
blocks that can be achieved simpler. A good example is the following code:

.nav-main {
 ul {
 li {
 a {
 color: red;
 }
 }
 }
}

This can be optimised in various ways. First of all, we don’t need the additional nesting. When no other styles are
needed just simply write compact: .nav-main ul li a { color: red; }

Another optimisation is to think about the required declaration levels. Do we really need the ul li to declare
our anchor red? Can it just simply be .nav-main a { color: red }?

When we are using multiple styles, we might even consider a structure such as:

.nav-main {
 ul {
 @extend list-reset;
 }
 li {
 padding: 5px 10px;
 }
 a {
 color: red;
 }
}

Which makes our code more structured and readable.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	Stylesheets

Structure

Every folder within private/sass/ includes a file called _all.scss. This file is included within
private/sass/base.scss which gets compiled into static/css/base.css. Update the all file to include
additional modules, do not include files directly within base.scss.

The SCSS file is structured into 3 separate section for mobile, tablet and desktop. This allows for an
easy responsive approach by maintaining the code within a single file.

Hint

The first line // @media all is commented in order to use the sass @extend functionality which is
currently not available within @media rules.

addons/

Separate modules which are plug-n-play able and add them into this folder. Traditionally these are django addons
which can be installed such as aldryn-blog, aldryn-news or aldryn-shop.

layout/

Layout specific styles such as header, footer or general forms should be added here. Also specific definitions for
print, retina or mobile only styles that are used globally should be defined here.

In addition you can set fonts, icons and custom mixins.

libs/

As foundation, we use normalize.css as many other boilerplates are using in its default state.

We are using the foundation grid [http://foundation.zurb.com/grid.html] with 24 columns and a max-width of
960px which offers the most flexible way of designing and a readable code.

We include various helper classes inspired by bootstrap within private/sass/libs/_bootstrap.scss.
It makes sense to read the code as most elements are setup using the settings within
private/sass/settings/default.scss.

These files should generally not be overwritten.

settings/

Control over color, sizes and other settings are found here. These settings have mostly impact on the available
libraries. You can add additional settings file if required. For example private/sass/settings/_shop.scss.

sites/

If you are working on a theme-based setup or have styles which do not fit into the folders described above, this
is the appropriate place to add them.

This folder can be freely structured. _custom.scss can be used for quick fixes or hacks.

Hint

Deep Nesting It can often happen that you end up with large sites files like _marketing.scss and
_application.scss. In order to modularise those files and create a better overview, you can create an additional
folder and include all required files within the original scss files. This could end up with a structure as
illustrated underneath.

sites/
├─ application/
│ ├─ _all.scss
│ ├─ _general.scss
│ └─ _wizard.scss
├─ marketing/
│ ├─ _all.scss
│ ├─ _layout.scss
│ └─ _addons.scss
├─ _application.scss (imports application/_all.scss)
└─ _marketing.scss (imports marketing/_all.scss)

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	Stylesheets

Reference

You can use the full power of the Django template language [https://docs.djangoproject.com/en/dev/topics/templates/].
Additionally the following libraries are on your disposal:

Django CMS

In order for Django CMS [http://docs.django-cms.org/en] to work, you need to include the css and js
sekizai blocks and add {% cms_toolbar %} after the closing </body> tag.

Django Sekizai

With sekizai [https://github.com/ojii/django-sekizai] you can include additional assets such as CSS or JavaScript.
Simply add {% load sekizai_tags %} on top of your file and use {% addtoblock "js" %} or
{% addtoblock "css" %}.

When including a single file, do not add any white spaces or breaks inside. Sekizai validates code for dublicates and
comfortably only includes one instance. So if you already include jQuery, Sekizai will only render it once.

The output is rendered within {% render_block "css" %} and {% render_block "js" %} in
templates/base_root.html.

Example

{% load sekizai_tags %}
{% addtoblock "css" %}<script src="{% static "css/theme.css" %}"></script>{% endaddtoblock %}
{% addtoblock "js" %}
<script>
jQuery(document).ready(function ($) {
 alert('hello world');
});
</script>
{% endaddtoblock %}

Django Compress

Django compressor [https://github.com/django-compressor/django-compressor] should also be enabled within your setup.
This allows you to compress files automatically on a live system.

Example

{% load compress %}

{% compress js %}
<script src="{% static "js/base.js" %}"></script>
<script>obj.value = 'value';</script>
{% endcompress %}

Aldryn Snake

Aldryn snakes behaves similar to django-sekizai but is mostly used within the backend. The output is rendered within
{{ ALDRYN_SNAKE.render_head }} and {{ ALDRYN_SNAKE.render_tail }}.

Aldryn snakes allows the additional insertion of html fragments or any other textual data.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	Stylesheets

Mistakes

There are several mistakes I find from time to time over again which I would like to clarify:

Floating

When using float: left;, display: block; is not required anymore as every element which is floated is
automatically a block element.

Hidden

With modern HTML5 we can use the html attribute``hidden=”hidden”`` which is a softer display: none;
and can easy be overwritten using css or JavaScript. This attribute is ideal for hiding elements which should be
later displayed using JavaScript, as there is no delay in which the element is hidden as for typical
dynamic execution.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

Images

Optimization

Images are the number one source of optimisation when it comes to file size.
Optimise images using tools like CodeKit [https://incident57.com/codekit/] or Grunt [http://gruntjs.com/].

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

JavaScript

This chapter describes in more detail what the JavaScript guidelines are, how they are structured and what
the requirements are:

	Guidelines

	Structure

	Reference

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	JavaScript

Guidelines

	Use 4 space indentation and not tabs

	Use camelCase for variables and not underscores or dashes

	Use dot annotation . for javascript file naming

	Use single-quotes ' for all values

	Use a maximum length of 120 characters, however 80 is preferred

	Use base.js for global and general functions and avoid adding js files to the root

	Use the frameworks prefix inside the addons folder

	Use the module and singleton pattern to structure code

	Use the js- prefix when working with JS related selectors and do not add stylings to it

	JavaScript should validate JS Lint

	Use full words instead of shorthands like number instead of nr

	Keep <script> and the following starting enclosure on the same level

	Separate all script tags within a {% addtoblock "js" %}

	Do not use inline JS within HTML attributes such as onclick="" or onload=""

	Do not use inline JS within HTML, try to implement JavaScript files only

	Do not add spaces when writing if (true) {} else {} or function helloWorld() {}

	Always use semicolons and full brackets except shortcuts like var i = (true) ? 'yes' : 'no';
or single lines if (index <= 0) index = 0;

	Always declare variables on top of the functions and not in-between

	Never use $ for variable names like var $el = $('.el');

	Never use comma separation for variable declerations like var a, b, c;

	Ensure that JavaScript widgets don’t create disturbances while the DOM is loading

	Please make sure that & has a character reference like “&”

Additionally follow the “Code Conventions for the JavaScript Programming Language”: http://javascript.crockford.com/code.html

Example

<script>
jQuery(document).ready(function () {

 var Cl.MyApp = {
 load: function {
 alert('hello world');
 }
 };

 // load application
 Cl.MyApp.load();

});
</script>

Prefixing

When using jQuery to refer to a DOM instance, always use the js- prefix to separate
styles from JavaScript functionality. For example: <div class="addon addon-gallery js-addon-gallery"></div>.

In this example, addon and addon-gallery define styles according to BEM principles and js-plugin-gallery
refers to the JavaScript functionality attached to the DOM element.

Even when removing the js class (or just waiting for javascript to kick in), the addon should still look ok.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	JavaScript

Structure

We use static/js/base.js as a single point of entry. Within this file, we lazy load additional elements using
require.js.

In addition, we use Cl as global namespace for all our custom code or addons to keep the global namespace clean.
Following this guideline, we use as initiation Cl.Base or Cl.Application for our website. See
static/js/addons/cl.utils.js as example.

Always add the appropriate prefix to the filename. If there are multiple libraries used within the file, the wrapping
namespace should win. In case of Cl.Utils we use jQuery, MBP and class.js. Cl wins as Cl.Utils is the wrapper.

addons/

Separate modules which are plug-n-play able and add them into this folder. Traditionally the
classjs-plugins [https://github.com/FinalAngel/classjs-plugins] are added here.

If you use external addons, such as jquery.select2, ensure that those files get added minified. Try to avoid
changing the code of external addons as this over complicates the update process if hotfixes are released.

libs/

We include three major frameworks to help us with JavaScript:
jQuery [http://jquery.com] and
class.js [https://github.com/FinalAngel/classjs]

class.js is simpler than the bloated jQuery UI and offers faster performance. It simply provides a more traditional
class based inheritance model but still uses prototypal inheritance.

Additional libraries such as respond.js or html5.js provide html/css shivs for older browsers.

tests/

Using QUnit you can create your JavaScript Unit tests here. This is a very simple setup and the folder structure
within this area can be customized according to your needs.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

 	JavaScript

Reference

jQuery

	http://jquery.com

class.js

	https://github.com/FinalAngel/classjs

Shivs

	https://github.com/aFarkas/html5shiv

	https://github.com/scottjehl/Respond

	https://code.google.com/p/swfobject/

	http://patik.com/blog/complete-cross-browser-console-log/

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	Aldryn Boilerplate Standard 3.0.5 documentation

Contribution

You are very welcome to help improving the aldryn-standard-boilerplate, especially the documentation.
Feel free to fork and send us pull requests.

To extend and run the documentation, you will have to manually install Sphinx [http://sphinx-doc.org/].
The automated setup takes care of the rest:

	navigate to docs cd docs

	run make init to install additional requirements

	run make run to let the server run

When opening localhost:8000 the screen might appear blank. This is due to the fact that the docs/_build folder is
not yet created. Simply change something within an *.rst file and refresh the page. Livereload will than take care
of the rest to auto refresh your page on change.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	Aldryn Boilerplate Standard 3.0.5 documentation

Index

 Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

 _static/down-pressed.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/minus.png

search.html

 Navigation

 		
 index

 		Aldryn Boilerplate Standard 3.0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Divio AG.
 Created using Sphinx 1.2.3.

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/up-pressed.png

