

 Navigation

 	
 index

 	
 next |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

Welcome

Aldryn Boilerplate Bootstrap 3 is the most complete django CMS based
Boilerplate for rapid development. It uses the full potential of the
Bootstrap [http://getbootstrap.com/] framework for developing responsive,
mobile-first projects on the web, and implements various best practices from
within the front-end community.

This Boilerplate can be used with standalone django CMS websites as well as
on the Aldryn [http://www.aldryn.com/] cloud platform.

The latest stable version is available on GitHub -
https://github.com/aldryn/aldryn-boilerplate-bootstrap3.

Documentation

	General
	What’s inside

	Installation

	Configuration

	Basic usage

	Guidelines
	General

	Comments

	Markup

	Styles

	JavaScript

	Structure
	General

	Private

	Static

	Templates

	Testing
	General

	Unit Tests

	Integration Tests

	Services

	Coding Style
	JavaScript

	Styles

	Tips and Tricks
	Floating

	Hidden Attribute

	Image Optimisation

	Contribution
	Code of Conduct

	Documentation

	Pull Requests

	Releases

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

General

Note

Welcome to the starting point of this documentation. Throughout each
section we familiarise you with the Guidelines,
Structure, Testing and other essential modules
for our front-end code. The goal is to create a common coding ground for
all developers.

	What’s inside
	Sass

	Bootstrap

	Font Awesome

	JavaScript

	Template Language

	Configuration

	Installation
	Setup

	Gulp Commands

	Configuration
	WYSIWYG

	Custom Icons

	Basic usage
	In your project

	In your applications

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	General

What’s inside

Note

This Boilerplate includes and configures a number of components.

Sass

For CSS pre-processing, we use Sass [http://sass-lang.com].
In particular, we use:

	LibSass [http://libsass.org/] for fast SASS compilation

	Gulp JS [http://gulpjs.com/] and the gulp-sass [https://github.com/dlmanning/gulp-sass] plugin to compile SASS files

	the official Sass port [https://github.com/twbs/bootstrap-sass] of
Bootstrap

All styles should be created in /private/sass, and will be compiled to
/static/css.

Bootstrap

The full Bootstrap library [http://getbootstrap.com] is imported via the
Sass component [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/blob/master/private/sass/libs/_bootstrap.scss]
and the JavaScript component [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/blob/master/static/js/libs/bootstrap.min.js].

Note

Aldryn Bootstrap 3 uses a 24 column based grid setting instead of the default 12. You can change this setting in private/sass/settings/_bootstrap.scss.

The Glyhpicon [http://getbootstrap.com/components/#glyphicons] icon set has
been disabled [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/blob/master/private/sass/libs/_bootstrap.scss#L14]
in favour of the Font Awesome [http://fortawesome.github.io/Font-Awesome/]
icon set.

Font Awesome

The Font Awesome library [http://fortawesome.github.io/Font-Awesome]
offers a larger and better
variety of icons [http://fortawesome.github.io/Font-Awesome/icons/]
than the Bootstrap defaults. Additional
utility classes [http://fortawesome.github.io/Font-Awesome/examples/]
are also available.

The library [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/blob/master/private/sass/libs/fontawesome/]
is similarly integrated as bootstrap-sass within the libs folder.

JavaScript

We are implementing the latest 2.x.x versions of
jQuery [http://jquery.com] as they are released. In addition we encourage
the use of class.js [https://github.com/FinalAngel/classjs], a simple library
that helps out with the modular pattern in JavaScript.

	http://jquery.com

	https://github.com/FinalAngel/classjs

In addition several commonly-used shims are available to you including:

	The HTML5 Shiv [https://github.com/aFarkas/html5shiv]

	Respond.js [https://github.com/scottjehl/Respond]

	<swfobject> [https://code.google.com/p/swfobject]

	Outdated Browser [http://outdatedbrowser.com]

	console.log wrapper [https://developer.chrome.com/devtools/docs/console-api]

Addons

We are currently implementing the select2.js bootstrap version [http://fk.github.io/select2-bootstrap-css/] as default addon.

Gulp

We use Gulp [http://gulpjs.com/] to manage our frontend workflow.

Template Language

As this is a django CMS based boilerplate, naturally we are using the
Django template language [https://docs.djangoproject.com/en/dev/topics/templates/].

In order to implements assets efficiently,
django-sekizai [https://github.com/ojii/django-sekizai] and
aldryn-snake [https://github.com/aldryn/aldryn-snake] are implemented within
the base_root.html template. This gives you the
{% addtoblock "js" %}{% endaddtoblock %} and
{% addtoblock "css" %}{% endaddtoblock %} template tags in addition to the
django defaults.

Example

{% load sekizai_tags %}
{% addtoblock "css" %}<link href="{% static 'css/theme.css' %}" rel="stylesheet">{% endaddtoblock %}
{% addtoblock "js" %}<script src="{% static 'libs/jquery.min.js' %}"></script>{% endaddtoblock %}

	http://docs.django-cms.org

Configuration

There are several configuration files included such as:

	EditorConfig [http://editorconfig.org/] within .editorconfig

	CSSComb [http://csscomb.com/] within .csscomb.json

	ESLint [http://eslint.org/] within .eslintrc.json

	SCSS-Lint [https://github.com/brigade/scss-lint] within scss-lint.json

Please mind that they are ignored if your editor doesn’t support them.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	General

Installation

Note

The following dependencies should be installed on your system in order to
work with this Boilerplate.

	Sass: http://sass-lang.com/

	Bootstrap: https://github.com/twbs/bootstrap-sass

	Node JS: http://nodejs.org/

	Gulp: http://gulpjs.com/

You can find most installation steps within
osx-bootstrap [https://github.com/divio/osx-bootstrap] but in short:

	run brew install node when using Homebrew [http://brew.sh/]

	run curl -L https://npmjs.org/install.sh | sh

	run npm install -g bower

	run npm install -g gulp

At last make sure you correctly configured your
paths [https://github.com/divio/osx-bootstrap/blob/master/core/npm.sh#L16].

Setup

Run the following commands to install all requirements from within the root of the package:

	npm install to install the requirements from package.json

	bower install to install the requirements from bower.json via .bowerrc

Gulp Commands

Warning

Please mind that gulp browser starts browserSync which tries to
connect to a server. A Django server can be started from within
tools/server. Refer the General section for
additional information.

All front-end related tasks are handled via the Gulp [http://gulpjs.com/]
task runner:

	gulp runs the gulp defaults

	gulp browser connects to a given server (django) and runs live reload on a separate IP

	gulp lint starts all linting services using .eslintrc.json and scss-lint.json

	gulp preprocess optimises images within /static/img and compiles YUIDoc into static/docs

	gulp sass to compile the stylesheets

	gulp tests runs the test suite

	gulp watch runs the gulp watch defaults

We also offer some standalone commands:

	gulp bower to install the bower dependencies

	gulp images optimises images within /static/img

	gulp icons to create a custom icon webfont

	gulp docs compiles YUIDoc into static/docs

	gulp lint:javascript runs JavaScript linting

	gulp lint:sass runs Sass linting

	gulp tests:unit runs unit tests

	gulp tests:integration runs integration tests

	gulp tests:watch runs tests in debugging mode

We love code over configuration.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	General

Configuration

Note

The Boilerplate ships pre-configured and runs out of the box if the
Installation steps are followed properly. However most components
can be freely configured.

WYSIWYG

The CMS allows for custom style sets within the editor. This ables the user
to choose certain presets or colours. We already added the general Bootstrap
utilities for you. The file can be found at:
/static/js/addons/ckeditor.wysiwyg.js.

[image: ../_images/editor-wysiwyg.png]

Custom Icons

We added support for custom icon-font generation through Gulp. There are some
configuration steps required if you want to use them:

	Add your SVG fonts to /private/icons. Gulp gets all SVG files from
the /private/icons/**/*.svg pattern and generates the fonts for you.

	Run gulp icons to generate the icon-font

	Uncomment // @import iconography; from
/private/sass/layout/_all.scss to include it in your gulp build

The gulp icons command will automatically generate the
/private/sass/layout/_iconography.scss file where you find the class
reference and mixins for all icons.

The generated icon-font will use the .icon css namespace for all
custom icons. We recommend using the icon(*) mixin instead of
@extend .icon-*.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	General

Basic usage

Once installed in an Aldryn or django CMS project,
Aldryn Boilerplate Bootstrap 3 is ready to use.

In your project

See Templates for guidelines on how to set up your project
templates so that they take advantage of what it has to offer.

Fundamentally, if your project’s templates inherit from the
base.html [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/blob/master/templates/base.html]
template, they’ll be furnished with the classes, elements, hooks and other
things they need.

In your applications

Your applications, if they are aware of Aldryn Boilerplate Bootstrap 3, can
also take advantage of it.

You could simply make your application assume that Aldryn Boilerplate
Bootstrap 3 will be available. That’s not ideal though, because it will be
off-putting to people who don’t want to have to use it. A reusable application
should have requirements that are as generic as possible, not based on a
particular frontend framework.

So, although it means a little more work for you, you should also provide
more generic frontend (templates, CSS etc) support for the application, and if
you like, for other Boilerplates too.

At the very least, the developers who use your application will find it easier
to create templates and static file for it that support their own frontend
conventions if they can start with simple ones.

Aldryn Boilerplates

To make this easier, use the
Aldryn Boilerplates [https://github.com/aldryn/aldryn-boilerplates]
application.

This provides support for multiple Boilerplates, allowing you to offer rich
frontend machinery compatible with Aldryn Boilerplate Bootstrap3 for those who
want it, and generic frontend files for those who don’t, in a way that the
correct set will automatically be chosen.

You can also add support for other Boilerplates, by adding the frontend
files to namespaced directories in your application. This example of an
application named aldryn_addon mentions only templates for sake of simplicity,
but the same principle applies to static files:

aldryn_addon
├─ templates/ # the generic templates
│ ├─ aldryn_addon/
│ └─ base.html
├─ boilerplates/ # templates for particular Boilerplates
│ └─ aldryn_boilerplate_bootstrap3/
│ └─ templates/
│ ├─ aldryn_addon/
│ └─ base.html
└─ some_other_boilerplate/
 └─ templates/
 ├─ aldryn_addon/
 └─ base.html

See Aldryn Boilerplates [https://github.com/aldryn/aldryn-boilerplates]
for more.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

Guidelines

Note

This section describes guidelines for several front-end related
technologies. We advise you to follow them. However it is sometimes
necessary to break the rules [https://www.youtube.com/watch?v=Xet5NcbQQ2A]
in which case you have to watch this video [https://www.youtube.com/watch?v=Xet5NcbQQ2A]
and leave a comment describing why this was necessary.

	General
	Standards

	Spacing

	Line Length

	Naming

	Quotes

	Comments
	Section Comments

	Inline Comments

	Formatting

	YUIDoc

	Markup
	Naming

	Indentation

	IDs vs Classes

	Modularity

	Styles
	Naming

	Nesting

	Formatting

	Ordering

	JavaScript
	Naming

	Formatting

	Implementation

	Patterns

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Guidelines

General

Note

There are global guidelines which affect every single language, file or
folder.

Standards

Important

	Validate your code through the W3C validators [http://validator.w3.org/].

	There is something called Accessibility [http://www.w3.org/WAI/WCAG20/quickref/].

	Don’t forget about HiDPI, Retina and High Resolutions displays.

	Proper fallbacks should be available if a connection is slow or features are disabled.

	Progressive enhancement, graceful degradation and responsive design are buzzwords you care about.

	Develop with modularity and extensibility in mind.

	Documentation is your friend.

Spacing

Important

	Use 4 spaces for indentation.

Not 2, 3 or 8 – no tabs – if you are able to do 3 3/4, that’s good enough

Line Length

Important

	Don’t breach 120 characters per line.

Not even for HTML. We even encourage you to use 80 characters per line. Yes,
screens have got much bigger over the last few years, but your brain hasn’t.
Better to use screen estate for splits, anyway.

Naming

Important

	lowercase, camelCase or hyphened separation are all good; use
no special characters except for underscore _.

	Use dashes - for file naming, unless expressly counterindicated (e.g. in HTML template names).

	Always use full words instead of abbreviations: number is better than nr.

	BEM [https://bem.info/] is a nice methodology to be aware of.

	“There are only two hard things in Computer Science:

	cache invalidation and naming things”
– Phil Karlton

Quotes

Important

	We always use double "." quotes for everything,
except in JavaScript, where we use single '.' quotes.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Guidelines

Comments

Note

If peppering your code with lots of comments is good, then having zillions
of comments in your code must be great, right? Not quite. It doesn’t make
sense to comment every step your code makes, or to comment on things that
don’t need to be explained.

Comments in code should describe:

	what is being done

	why it’s being done

They do not need to describe:

	how it is being done (the code already shows this)

	what you are thinking about

Section Comments

In addition to the regular comments, we introduced the section comment. Use
this style to separate large chungs of logic (which you should generally avoid).
The line is exactly 80 characters long:

// ###
// NAME

Inline Comments

When using comments inline, make use of the appropriate formats:

	{# ... #} or {% comment %} ... {% endcomment %} for Django templates
and never <!-- ... -->

	// ... and /* ... */ for Sass and JavaScript

Notes

We also use several comment helpers which, if configured in your editor,
add additional highlighting to your code:

FIXME:

to annotate problems with the code

function Calculator() {
 // FIXME: shouldn't use a global here
 total = 0;
 ...
}

TODO:

to annotate solutions to problems with the code

function Calculator() {
 // TODO: total should be configurable by an options param
 this.total = 0;
 ...
}

DOCS:

provides a simple docs link

// DOCS: https://django-cms.readthedocs.org/en/latest/

Formatting

Comments

	Add proper whitespace.

	In general use lowercases except for the Notes.

bad
//TODO: THIS NEEDS ADDITIONAL REVIEW
//
// square root of n with Newton-Raphson approximation
/**
 * Contains various helpers, feel free to extend and adapt
 */

good
// TODO: this needs additional review
// square root of n with Newton-Raphson approximation
/**
 * Contains various helpers, feel free to extend and adapt
 *
 * @class Utils
 * @namespace Cl
 */

YUIDoc

In 3.3.0 we introduced YUIDoc [http://yui.github.io/yuidoc/] which uses
syntax similar to JSDoc in order to further improve JavaScript documentation.
We encourage using this style within your code, as shown in
/static/js/addons/cl.utils.js.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Guidelines

Markup

Note

In addition to the General guidelines, the following sections
describe markup specific rules.

Naming

Important

	Use underscores for HTML file naming.

	Use lowercase for all attributes.

// bad
two_column-template.html, tpl-master.html, askForAdditionalInformation.html

<DIV class="box boxHighlighted" DATA-rel="#my_modal"> ... </DIV>

// good
two_column_template.html, tpl_master.html or ask_for_additional_information.html

<div class="box box-highlighted" data-rel="#my-modal"> ... </div>

Indentation

Important

	Always add an indent after Django tags such as {% if %}, {% forloop %}, {% block %} and so on.

	Use single lines within {% addtoblock %} for files and multilines for <code>.
It is important because of how sekizai works. Basically if two scripts are
added through addtoblock and the contents of the block are the same
they are merged. That way you never have duplicate jQuery’s on the page.
The caveat than is that the whitespace around that script tag must match.
To avoid mistakes we always do them in single line.

	Code readability always wins.

// bad
{% block content %}
<div class="plugin-blog">{% if true %}<p>Hello World</p>{% endif %}</div>
{% endblock content %}

{% addtoblock "js" %}
<script src="{% static "js/libs/jquery.min.js" %}"></script>
{% endaddtoblock %}
{% addtoblock "js" %}
 <script>
 jQuery(document).ready(function ($) {
 alert('hello world');
 });
 </script>
{% endaddtoblock %}

// good
{% block content %}
 <div class="plugin-blog">
 {% if true %}
 <p>Hello World</p>
 {% endif %}
 </div>
{% endblock content %}

{% addtoblock "js" %}<script src="{% static "js/libs/jquery.min.js" %}"></script>{% endaddtoblock %}
{% addtoblock "js" %}
<script>
jQuery(document).ready(function ($) {
 alert('hello world');
});
</script>
{% endaddtoblock %}

IDs vs Classes

Important

	Avoid IDs wherever possible.

	Where it’s necessary to use IDs, always use unique names.

You should always use classes instead of IDs where you can. Classes
represent a more OOP approach to adding and removing style sets like
box box-wide box-hint.

Try to avoid declaring ID’s at all. They should only be used to reference form
elements or for in-page navigation in which case you need to make the name
absolutely unique.

// bad
<div class="box box-highlighted" id="box-8723"> ... </div>
<!-- IDs only for navigation jumper through -->
<div id="team"></div>
<!-- IDs only for form elements -->
<label for="firstname">Name</label>
<input type="text" name="firstname" id="firstname">

// good
<div class="box box-highlighted box-8723"> ... </div>
<!-- IDs only for navigation jumper through -->
<div id="page-anchor-team"></div>
<!-- IDs only for form elements -->
<label for="field-id12-firstname">Name</label>
<input type="text" name="firstname" id="field-id12-firstname">

Modularity

Important

Try to keep HTML structure simple, avoiding unnecessary elements.
It is sometimes easier to use a single div with a
single class rather than multiple divs with multiple classes.

For example, lets take a look at the following code snippet:

<div class="addon-blog">
 <h2>My Blog</h2>
 <p>Hello World</p>
</div>

We should build modular HTML, and take pains to avoid type selectors.
Add additional classes for lead, content, author, meta info, tags and so on.
The content section itself can then contain the usual HTML code:

<div class="addon-blog">
 <h2 class="blog-heading">My Blog</h2>
 <p class="blog-lead">Hello World</p>
 <div class="blog-content">
 <h3>Details</h3>
 <p>More</p>
 <p>Content</p>
 </div>
 <div class="blog-author">Dummy Man</div>
 <ul class="blog-tags tags">
 <li class="blog-tag-items">News
 <li class="blog-tag-items">Blog
 <li class="blog-tag-items">Tags

</div>

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Guidelines

Styles

Note

In addition to the General guidelines, the following sections
describe stylesheet-specific rules.

Naming

Important

	Use lowercase in SCSS file names.

	Use only dashes in class/ID names.

// bad
Search.scss, marketingSite.scss or theme-dark-blog.scss

class="blog blogItem blog_item__featured"

// good
search.scss, marketing_site.scss or theme_dark_blog.scss

class="blog blog-item blog-item-featured"

Nesting

Important

	Don’t overuse nesting; nest elements to a maximum of 4 indents.

With great power comes great responsibility (just wanted to throw that in here).
When writing in Sass or Less laziness can have performance implications.
While nesting is very powerful, we should avoid unnecessary levels or
blocks that can be simplified.

// bad
.nav-main {
 ul {
 @extend list-reset;
 li {
 padding: 5px 10px;
 a {
 color: red;
 }
 }
 }
}

// good
.nav-main {
 ul {
 @extend list-reset;
 }
 li {
 padding: 5px 10px;
 }
 a {
 color: red;
 }
}

Formatting

Important

	Always add a space after the colon :.

	Only write one CSS property per line.

	Avoid using selectors such as div.container or ul > li > a (i.e. ad-hoc, non-namespaced) to determine
specificity [https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity].

	Write colour values in lowercase and avoid colour names.

// bad
article.item {
 color: white;
 padding: 10px; margin-left: 0; margin-top: 0; margin-bottom: 10px;
 background-repeat: no-repeat;
 background-position: left top;
}

// good
.item {
 color: #fff;
 padding: 10px;
 margin: 0 0 10px 0;
 background: no-repeat left top;
}

Ordering

Important

	Use block-style, and group elements below.

	See scss-lint.json for a comprehensive ordering example.

	includes (mixins)

	extending

	visibility, position

	color, font-size, line-height, font-* (font relevant data)

	width, height, padding, margin (box model relevant date)

	border, background (box style data)

	media, print (media queries)

	:after, :before, :active (pseudo elements)

	nested elements or parent referencing selectors

Note

Combine attributes such as background-image, background-color,
background-repeat into a single line background:
#fff url("image.png") no-repeat left top; when it makes sense.
But remember, that a shorthand like background cannot be overridden
with just background-image, so use wisely!

Example

.addon-blog {
 // mixins
 @include border-radius(3px);
 @include box-shadow(0 0 2px #eee);
 // extending
 @extend .list-unstyled;
 // styles
 display: inline;
 position: relative;
 z-index: 1;
 color: white;
 font-size: 16px;
 line-height: 20px;
 width: 80%;
 height: 80%;
 padding: 5px;
 margin: 0 auto;
 border: 2px solid #ccc;
 background: #ddd;
 // desktop and up
 @media (min-width: $screen-md-min) {
 display: block;
 }
 // pseudo elements
 &:active,
 &:hover {
 color: black;
 }
}

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Guidelines

JavaScript

Note

In addition to the General guidelines, the following sections
describe JavaScript specific rules.
Code Conventions for the JavaScript Programming Language [http://javascript.crockford.com/code.html]
should be your Bible.

Naming

Important

	Use dot annotation test.base.js for JavaScript file naming.

	Use a library’s prefix, such as cl.xplorer.js or jquery.tablesorter.js, for file naming.

	Name variablesLikeThis, ClassesLikeThis, CONSTANTS_LIKE_THIS and events-like-this.

	Use the js- prefix when working with JS-related selectors and do not add styling to it.

	Never use comma separation for variable declarations like var a, b, c;.

	Never use $ for variable names such as var $el = $('.el');.

	We are using the Cl. singleton for all custom JavaScript code.

When using jQuery to refer to a DOM instance, always use the js-
prefix to separate styles from JavaScript functionality. For example:
<div class="addon addon-gallery js-addon-gallery"></div>.

In this example, addon and addon-gallery have styles attached to them,
js-plugin-gallery refers to the JavaScript functionality attached to the DOM
element.

Even when removing the JS class (or just waiting for JavaScript to kick in),
the addon should still look good.

// bad
CL.Utils.js, jquery_tooltip.js, testWebsiteCreateNew.js

var $jquery, current_state;
var test-website-create-new;

// good
cl.utils.js, jquery.tooltip.js or test.website.create.new.js

var jquery;
var currentState;
var nextIndexValue;

Formatting

Important

	Always declare variables on top of the functions and not in between.

	Always use semicolons [https://www.youtube.com/watch?v=M94ii6MVilw]
and full brackets, except in shorthand like
var i = (true) ? 'yes' : 'no';.

	Use proper spaces for if (true) {} else {} or function () {}.

// bad
function(cont){
 var c = $(cont);
 if(c.length) {
 // do something
 }
 else
 {
 // so something else
 }
}

// good
function (container) {
 var container = $(container);
 if (container.length) {
 // do something
 } else {
 // so something else
 }
}

Implementation

Important

	Keep <script> and the following starting closure on the same level.

	Separate all script tags using {% addtoblock "js" %}{% endaddtoblock %}.

	Never use JavaScript attributes on HTML elements such as onclick="" or onload="".

	Don’t add inline JavaScript within HTML, implement JavaScript through files only. Instantiate functionality
from within the JavaScript file instead.

// bad
<div class="dashboard" id="dashboard"> ... </div>
{% addtoblock "js" %}
<script src="{% static "js/addons/cl.dashboard.js" %}"></script>
{% endaddtoblock %}
<!-- javascript gets initialised inside the template -->
{% addtoblock "js" %}
<script>
jQuery(document).ready(function () {

 Cl.dashboard.init('#dashboard');

});
</script>
{% endaddtoblock "js" %}

// good
<div class="dashboard js-dashboard" data-dashboard="..."> ... </div>
<!-- javascript gets initialised within the file -->
{% addtoblock "js" %}<script src="{% static "js/addons/cl.dashboard.js" %}"></script>{% endaddtoblock %}

Patterns

Important

	Use the
singleton pattern [http://addyosmani.com/resources/essentialjsdesignpatterns/book/#singletonpatternjavascript]
to avoid globals.

	Use the module pattern [http://addyosmani.com/resources/essentialjsdesignpatterns/book/#modulepatternjavascript]
to structure code.

	Avoid the functional pattern [http://1closure.com/2012/06/object-oriented-javascript-the-functional-pattern/]

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

Structure

Note

This section covers naming conventions for folders and sub-directories.
The correct placing of files is imperative for a common shared structure.
It is easier to find code when you already know where it’s going to be.

	General
	docs/

	private/

	static/

	templates/

	tests/

	Private
	addons/

	layout/

	libs/

	mixins/

	settings/

	sites/

	Static
	css/

	fonts/

	img/

	js/

	swf/

	Templates
	base_root.html

	base.html

	User-selectable page templates

	includes/

	Page Templates

	Page Types

	Blocks and Placeholders

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Structure

General

Note

Let’s cover the core structure of this Boilerplate consisting of the
main folders:

docs/
private/
static/
templates/
tests/

The starting point for each entry is always named “base”``”, with the
appropriate file extension. For HTML base.html, Sass base.scss,
JavaScript base.js – you get the idea. This way you always know which file
you should look after first. Lets take a closer look at each individual
folder:

docs/

The full documentation is stored within /docs and is compiled into
/docs/_build when running make run. The documentation is automatically
pushed to Read the Docs [https://aldryn-boilerplate-bootstrap3.readthedocs.org/en/latest/]
once something is committed to the master branch. More information on how to
contribute to the documentation can be found within the Contribution
section.

private/

Important

This folder is not published, nor touched by preprocessing or other
build libraries. Anything in here should be and remain safe.

This folder is intended for storing preprocessing library code (Sass, Less,
Coffee, HAML, etc). Simply create a folder within /private with appropriate
name: /sass, /less or /haml and so on as required. Always place
required configuration files within the /private root.

private/
├─ sass/
│ └─ base.sass
└─ config.rb

Hint

We are using /sass as folder name and not /scss as the language
itself is called Sass [http://sass-lang.com/]. Always use the full
written acronym.

static/

Important

This folder is publicly available, all files can be accessed via
http://yourwebserver/static/.

The default folder layout looks as follows:

static/
├─ css/
├─ fonts/
├─ img/
├─ js/
├─ swf/
└─ ...

If folders are not required, just simply remove them. When a folder reaches a
certain file count, make use of grouping and create additional sub-directories
such as /static/img/icons or /static/js/addons/jquery.

templates/

All django templates should be allocated within the /templates folder.
This also applies for apps or inclusion files. When using
Haml [http://haml.info/], set your configuration so templates get compiled
into /templates.

The default index.html is always /templates/base.html.

Global inclusion files are placed within /templates/includes.
Addons normally have their own /includes folder so they are not overcrowding
the structure.

tests/

The test suite is described in more depth within the Testing section.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Structure

Private

Note

Let’s have a closer look at the Sass setup within /private and
explain how we structured the code in there. These principles can be
expanded to other preprocessors options such as Less or HAML.

Every folder within /private/sass has a file called _all.scss.
This file ultimately gets imported by /private/sass/base.scss which gets
compiled into /static/css/base.css. Update the _all.scss file to include
additional modules. To keep the file simple, do not include files directly
within base.scss.

Let’s cover the folders individually:

addons/

If a component is plug-and-playable, it probably belongs in here. Good examples
are jQuery plugins or Aldryn addons. Sometimes larger application such as a
shop might also be pluggable. If this is not the case, they belong in
the /sass/sites directory.

Warning

You will always encounter the question whether to place a component within
/sass/addons or /sass/sites. In case of doubts, use the
sites folder.

layout/

We consider the general look and feel as the layout of a website or
application. This might include the typography, header and footer, icons or
the printable version. The layout can be broken down into further parts if a
website gets very large. We advise in general against this strategy and rather
prefer to use /sass/sites to create specific layouts and derive from a
global common style guide.

Warning

Everything that targets a specific element, such as custom styles for
Bootstrap components or a specific form error, belongs in
/sass/addons or /sass/sites.

libs/

All independent files are placed within this folder. This implies that the
order of inclusion does not matter within /sass/libs/_all.scss.

Hint

Libraries are, in their very core, plug-and-playable. The main difference
between libraries and other plug-and-play components is, that if a
library is removed, things will break.

mixins/

This folder is used to store additional functions or mixins which are not part
of the default bootstrap eco-system.

We provide already some helper functions such as em(12px, 16px) that
calculates the pixel values from a given size in relation to the parent size.

Additionally we have mixins for managing z-index layers and hide-content.

settings/

It is very useful to store values, that are used more than twice, within their
own variable. We even encourage storing all colour values within the
settings. Don’t repeat yourself. Create a sub-structure, similar to
/sites if the structure becomes more complex.

Warning

Do not add additional variables to /private/sass/settings/_bootstrap.scss.
This file is reserved for Bootstrap-only variables. Use
/private/sass/settings/_custom.scss instead.

sites/

Besides /addons you will work mostly within the /private/sass/sites
folder. All custom elements that are in general not plug-and-playable,
fixed into the website somewhere or specific components, get thrown in here.

This will force you to devise and adhere to structure patterns. Here are
some examples depending on the requirements for your project:

Note

Multisite Setup

Let’s assume you create one style guide sharing different marketing
websites or applications - your structure might look something like:

sites/
├─ application/
│ ├─ _all.scss
│ ├─ _general.scss
│ └─ _wizard.scss
├─ marketing/
│ ├─ _all.scss
│ ├─ _layout.scss
│ └─ _addons.scss
├─ _application.scss (imports application/_all.scss)
└─ _marketing.scss (imports marketing/_all.scss)

Note

Theme Setup

If you are using different themes for the same markup, your structure
might look something like:

sites/
├─ dark_theme/
│ ├─ _all.scss
│ ├─ _header.scss
│ └─ _footer.scss
├─ white_theme/
│ ├─ _all.scss
│ ├─ _header.scss
│ └─ _footer.scss
├─ dark_theme.scss (imports dark_theme/_all.scss)
└─ white_theme.scss (imports white_theme/_all.scss)

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Structure

Static

Note

As /static is publicly accessible, avoid adding sensitive files into
this directory.

Keep the root path of /static simple and clean. Only favicons should be
placed there. They ultimately get picked up by the base_root.html template.

css/

CSS gets automatically compiled via /private/config.rb into this folder.
You can add additional files such as *.htc if required. But always
add CSS files through Sass.

fonts/

All fonts should be placed here including icon fonts. You can create
sub-directories to create a better overview. This folder might not be required
if you are implementing fonts via services such as
Google Fonts [http://www.google.com/fonts] or fonts.com [http://fonts.com].

img/

Demo images (which might be later integrated as media files via Filer)
should be placed within /static/img/dummy. This folder will be ignored by
the gulp preprocess and gulp images commands.

Make use of grouping and create additional sub-directories such as
/static/img/icons or /static/img/visuals if the file count seems to
be excessive.

js/

The same structure approach as described within Private is applied to
the JS directory. /layout, /settings and /sites are not required,
but may be used. jQuery is an essential part and should be
treated the same as the Bootstrap component.

swf/

Old school, currently only required to use /static/js/libs/swfobject.min.js.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Structure

Templates

Note

Aldryn Boilerplate Bootstrap 3 follows django CMS good practices, and
provides three layers of site template inheritance using {% extends %}.
See Django template engine [https://docs.djangoproject.com/en/dev/topics/templates/].

From the top down the three layers are:

	user-selectable page templates (base.html), which inherit from:

	base_root.html

base_root.html

base_root.html sets up the components that will rarely if ever need to be
changed, and that you want to keep out of sight and out of mind as much as
possible.

It contains fundamental HTML elements (<html> <body> and so on) so that
these don’t need to be managed in inheriting templates.

It is also intended to be almost wholly content-agnostic - it doesn’t know or
care about how your site’s pages are going to be structured, and shouldn’t
need to. To this end it provides an empty {% block extend_root %}{% endblock %},
that inheriting templates will override to provide the page’s content.

In addition, Addons such as Aldryn News & Blog [https://github.com/aldryn/aldryn-newsblog]
in the Aldryn Collection family of applications are designed to use the same
JavaScript frameworks throughout, so there is no need for references to them
to be made anywhere else than base_root.html.

base.html

base.html is the template that designers will be most interested in.
It fills in the bare HTML elements of base_root.html, and allows page
content structures and layouts (headings, divs, navigation menus and so on)
to be created within {% block extend_root %}.

base.html contains an empty {% block content %}, that - in templates
that extend it - is filled with {% placeholder content %} as well as width
cues for images etc.

User-selectable page templates

Finally, users can select templates that inherit from base.html.
Even if your project has one ‘standard’ template and some minor variations,
it is wise for all of them to inherit from a base.html, so that they
can all be edited independently. Even if your ‘standard’ template changes
nothing in base.html, you should not be tempted to make base.html
selectable by the user.

The following templates are always required:

	404.html for 404 error handling. You are not obliged to construct an
elaborate and hilarious tribute to some trope in popular culture, because you are an adult.

	500.html for critical errors, only add generic html without template tags

	base.html as entry point for {% extends %}

includes/

Global inclusion files should be added here, for example the
navigation [http://django-cms.readthedocs.org/en/develop/reference/navigation.html],
django messages [https://docs.djangoproject.com/en/dev/ref/contrib/messages/]
or tracking codes. Create additional /include folders within addons to avoid
overcrowding this directory.

Page Templates

django CMS allows you to set
CMS_TEMPLATES [http://docs.django-cms.org/en/latest/reference/configuration.html#cms-templates]
which can be chosen within the CMS by the user.

[image: ../_images/toolbar-templates.png]

Page Types

You can save a CMS page as “Page Type” and re-use it later when creating a
new page. Simply select Page > Save as Page Type .. and choose a name.
You can create a new page by selecting Page > Add Page > New Page and choose
the “Page type” you want to use. That drop down does not show up if there are
no page types saved.

Page types are listed separately within the menu tree underneath Page Types.
This allows you to change or delete them at any time if required.

[image: ../_images/toolbar-page-types.png]

Blocks and Placeholders

The content block {% block content %}{% endblock %} and placeholder
{% placeholder content %} always need to be present within page templates.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

Testing

Note

This section describes the unit and integration tests setup using
Jasmine [http://jasmine.github.io/] and
Protractor [http://www.protractortest.org]. You will find advice
on how to setup your own testing infrastructure, integrate it into
Travis and connect with
Sauce Labs [http://saucelabs.com].

	General
	Commands

	Naming

	Structure

	Configuration

	Browserslist

	Local Server

	Unit Tests
	Configuration

	Fixtures

	Coverage

	Integration Tests
	Configuration

	Coverage

	Services
	Travis

	Sauce Labs

	Code Climate

	Coveralls

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Testing

General

We use two kinds of tests: unit and integration tests. Unit tests are
simple test cases, that test a single piece of functionality within a given
JavaScript file in an isolated environment without the DOM. Integration tests
test the users interaction following certain move, click and keyboard
interactions.

This testing infrastructure includes them both with Jasmine [http://jasmine.github.io/] as the test suite and Karma [http://karma-runner.github.io/] as the test runner for unit tests.
Protractor [http://www.protractortest.org] serves as the integration tests framework.
Both tests can be run separately as described in Commands below.

All tests are located within /tests. Each pull request is validated on
Travis [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/blob/master/.travis.yml], which runs the test executing the gulp tests
command. You can also run this command locally, if you followed the
Installation instructions.

Commands

The following commands are available to you:

	gulp tests runs the entire test suite

	gulp tests:unit only runs the unit tests

	gulp tests:integration only runs the integration tests

	gulp tests:watch to start karma to watch unit tests

Naming

The naming for tests should adhere to the conventions established in
General and JavaScript.

Unit tests should be prefixed using test before the name file name and
integration tests use spec. For example:

test.header.js
test.footer.js
test.content.typography.js
test.content.wysiwyg.js
...

spec.header.js
spec.footer.js
spec.content.typography.js
spec.content.wysiwyg.js
...

Structure

Unit tests are located within /tests/unit and integration tests within
/tests/integration to create a clear separation. There are several
configuration files available within the /tests directory described in
Unit Tests and Integration Tests respectively.

The starting structure looks like this:

tests/
├─ fixtures/
├─ integration/
├─ unit/
├─ base.conf.js
├─ karma.conf.js
└─ protractor.conf.js

Fixtures and coverage are described in more depth within
Unit Tests.

Configuration

The configuration files are located at the root of the /tests folder.
karma.conf.js defines the settings for the gulp tests:unit command and
protractor.conf.js for the gulp tests:integration command.

The function of these configuration files is described in more depth within
Unit Tests or Integration Tests.

Browserslist

Browserslist [https://github.com/ai/browserslist] enables us to provide a
compiled and ready to use browser-list to services such as Sauce Labs,
Autoprefixer and more.

Simply add the required browser to the browserslist file. Our configuration
includes the last 2 versions and ie >= 9.

Local Server

You need to be able to run
django [https://docs.djangoproject.com/en/1.8/intro/install/] to start a
local server:

	run cd tools/server

	run make install to setup the server

	run make run to start the server

the development server will be reachable on http://0.0.0.0:8000/

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Testing

Unit Tests

Configuration

The main configuration file to look at is /tests/karma.conf.js.
It configures our files, exclude and preprocessors paths.

In files you add all the files required to be loaded in your tests.
For example if we do not add jQuery into this array, we would not have it
available to us while the tests run.

The exclude setting allows us to specifically exclude certain files from
loading in the browser. By defining a path - say addons/*.js in
exclude - we can exclude scripts such as addons/myscript.js.

Finally, add all files you want to be covered to preprocessors. We do not
simply include all files, as we cannot guarantee the coverage of libraries or
3rd party addons.

Fixtures

/tests/fixtures is used to load HTML snippets in your unit tests.
Simply define the path in test file, load the fixture and then test against
it.

// load the fixture
fixture.setBase('tests/fixtures');
this.markup = fixture.load('snippet.html');

// test
expect(fixture.el.firstChild).to.equal(this.markup[0][0]);

// now let's cleanup
fixture.cleanup()

You can find more information about this in the
karma-fixtures [https://github.com/billtrik/karma-fixture] documentation.

Coverage

This folder is added when running unit tests either through gulp tests,
gulp tests:unit or gulp tests:watch. Coverage uses the
istanbul [https://gotwarlost.github.io/istanbul/] tool to give you a nice
UI for debugging. Just simply launch the index file in either one of the
sub-folders generated. There can be as many sub-folders as clients connected
to your runner.

It’s worth to mention that the success of your project does not depend on the
tests or the percentage of your code coverage, but it will improve maintenance
and further development for you and other contributors. We should aim for the
highest possible coverage.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Testing

Integration Tests

Configuration

The main configuration file to look at is /tests/protractor.conf.js.
It configures our browserName.

In browserName we specify the browser that will be used to launch the tests.
It can be set to phantomjs, firefox or chrome.

You can find more information about this in the
protractor referenceConf.js [https://github.com/angular/protractor/blob/master/docs/referenceConf.js]
documentation.

All spec files should be placed in /tests/integration/specs and all page
object files should be in /tests/integration/pages. So, the file organisation
structure is:

tests/
└─ integration/
 ├─ specs/
 │ ├─ spec.name.js
 │ └─ spec.another.name.js
 └─ pages/
 ├─ page.name.js
 └─ page.another.name.js

The specs that will be launched are defined in the gulpfile.js. They can be
specified using patterns:

return gulp.src([PROJECT_PATH.tests + '/integration/specs/*.js'])

By default all specs inside /tests/integration/specs folder will be launched.

Coverage

Integration coverage is measured by the number of critical path or regression
test cases that were automated. Keep in mind that the success of your project
does not depend on the tests or the percentage of your code coverage, but it
will improve maintenance and give you and other contributors more confidence in
the quality of the product you produce. We should aim for the highest possible
coverage and quality.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Testing

Services

Travis

The Travis [http://docs.travis-ci.com/] configuration is fairly
straightforward. You can see our example configuration file for reference. The
important point here is to add all your credentials using travis encrypt
for security reasons.

You can install the travis command line tool by running gem install
travis.

Sauce Labs

Sauce Labs [https://saucelabs.com/] helps us to run our unit and integration
tests on multiple browsers.

When using our test suite locally, phantomjs [http://phantomjs.org] is used
in the interests of speed, especially on integration tests. However this does
not test on real browsers, so is not comprehensive and various issues can slip
through undetected. In order to provide real-browser test coverage,
.travis.yml is configured to connect to Sauce Labs and run our test against
a matrix of browsers.

For each new setup you need to adapt the env: global: variables by adding:

travis encrypt SAUCE_USERNAME={USER} --add
travis encrypt SAUCE_ACCESS_KEY={TOKEN} --add

Where {USER} represents the sub-account user name and {TOKEN}
the sub-account token.

See the example .travis.yml [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/blob/master/.travis.yml]:

	the first secure line in env: global: represents encrypted Sauce Labs sub-account user name

	the second secure line stands for encrypted Sauce Labs sub-account token

	the third secure line is the encrypted Code Climate token

Important

To get the correct
status image [https://docs.saucelabs.com/reference/status-images/]
from Sauce Labs you will have to create sub-accounts for each project.
Otherwise, all tests will share the same badge.

We set up the configuration files to skip Sauce Connect when you test locally;
these tests will only run on Travis.

Browser Matrix

You can configure the browser matrix within /tests/base.conf.js. There is
an elegant platform configurator [https://docs.saucelabs.com/reference/platforms-configurator/] available to
you if you want to add more browsers.

Code Climate

We also support Code Climate [http://codeclimate.com] to show the current
coverage status. You simple need to import your project and add the appropriate
repo token:

travis encrypt CODECLIMATE_REPO_TOKEN={TOKEN} --add

Where {TOKEN} represents the key from Code Climate.

Coveralls

You can use Coveralls [http://coveralls.io] as an alternative to show the
current coverage status. You simply need to import your project and Karma will
take care of the rest.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

Coding Style

Note

Compare to the Guidelines and the Structure
we offer many more coding conventions, most of them are being covered by
certain linting tools such as ESLint and CSS Lint. You will also find good
practice and common sense here. Yet note that these are conventions and
eventually will make their way to the guidelines.

	JavaScript
	Why?

	Formatting
	Blocks

	Comments

	Whitespace

	Commas

	Semicolons

	Variables
	General

	Objects

	Arrays

	Strings

	Functions

	Functions context

	Properties

	Hoisting

	Types
	Type Casting and Coercion

	Comparison Operators & Equality

	jQuery
	Variables

	Ajax

	Common patterns
	Loops

	Naming conventions

	Events

	Templates

	Classes

	Passing data to components

	Magic numbers

	ECMAScript 5

	Styles
	General
	Main problem with CSS

	Selector performance

	JS selectors

	Magic numbers

	Sass
	Sass or SCSS

	Nesting

	Extends

	Color manipulation

	Autoprefixer

	Bootstrap
	Media queries

	Open for discussion

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Coding Style

JavaScript

Note

This section is heavily inspired by a Airbnb JavaScript Style Guide,
Yandex Codestyle, Idiomatic Javascript and lots of common sense, really.

Why?

“All code in any code-base should look like a single person typed it,
no matter how many people contributed.” - Rick Waldron

These are the fundamental principles we should follow when we design and
develop software.

	Consistent code is easy to read.

	Simple code is easy to maintain.

	In simple expressions it’s harder to make mistakes.

Formatting

Blocks

Use braces with all blocks. Don’t do inline blocks.

// bad
if (test)
 return false;

// bad
if (test) return false;

// good
if (test) {
 return false;
}

// bad
function () { return false; }

// good
function () {
 return false;
}

When you’re using multi-line blocks with if and else, put else on the same
line as your if block’s closing brace.

// bad
if (test) {
 thing1();
 thing2();
}
else {
 thing3();
}

// good
if (test) {
 thing1();
 thing2();
} else {
 thing3();
}

Comments

Follow the guidelines.
Use // for single line comments. Place single line comments on a newline
above the subject of the comment. Between the // and the text of the
comment should be one space character.

// bad
var active = true; //is current tab

// good
// is current tab
var active = true;

Most importantly, keep comments up to date if the code changes.

Whitespace

With proper .editoconfig and eslint setup these will be enforced
automatically, but still:

	4 spaces for tabs.

	Place 1 space before leading curly brace.

	Place 1 space before the opening parenthesis in if, while, etc.

	Place 1 space after colon.

	Place no space before the argument list in function calls and declarations, e.g. function fight() { ... }

	Set off operators with spaces, e.g. var x = 2 + 2;

	No whitespace at the end of line or on blank lines.

	
	Lines should be no longer than 120 characters. There are 2 exceptions, both allowing the line to exceed 120 characters:

	
	If the line contains a comment with a long URL.

	If the line contains a regex literal. This prevents having to use the regex constructor which requires otherwise
unnecessary string escaping.

	End files with a single newline character.

Use indentation when making long method chains. Use a leading dot, which
emphasises that the line is a method call, not a new statement.

// bad
$('#items').find('.selected').highlight().end().find('.open').updateCount();

// bad
$('#items').
 find('.selected').
 highlight().
 end().
 find('.open').
 updateCount();

// good
$('#items')
 .find('.selected')
 .highlight()
 .end()
 .find('.open')
 .updateCount();

Leave a blank line after blocks and before the next statement

// bad
if (foo) {
 return bar;
}
return baz;

// good
if (foo) {
 return bar;
}

return baz;

// bad
var obj = {
 foo: function() {
 },
 bar: function() {
 }
};
return obj;

// good
var obj = {
 foo: function() {
 },

 bar: function() {
 }
};

return obj;

Use newlines to group logically related pieces of code. For example:

doSomethingTo(x);
doSomethingElseTo(x);
andThen(x);

nowDoSomethingWith(y);

andNowWith(z);

Commas

	Leading commas: God, no!

	Additional trailing comma: No

// bad
var hero = {
 firstName: 'Kevin',
 lastName: 'Flynn',
};

var heroes = [
 'Batman',
 'Superman',
];

// good
var hero = {
 firstName: 'Kevin',
 lastName: 'Flynn'
};

var heroes = [
 'Batman',
 'Superman'
];

Semicolons

Yes, always.

// bad
(function () {
 var name = 'Skywalker'
 return name
})()

// good
(function () {
 var name = 'Skywalker';
 return name;
})();

// good (guards against the function becoming an argument when two files
// with IIFEs are concatenated) this should not happen if the previous
// example is enforced, but sometimes we have no control over vendor code
;(function () {
 var name = 'Skywalker';
 return name;
})();

Variables

General

Always use var to declare variables. Not doing so will result in global
variables. We want to avoid polluting the global namespace

Assign variables at the top of their scope. This helps avoid issues with
variable declaration and assignment hoisting related issues.

Use one var declaration per variable. It’s easier to add new variable
declarations this way, and you never have to worry about swapping out
a ; for a , or introducing punctuation-only diffs.

// bad
var items = getItems(),
 goSportsTeam = true,
 dragonball = 'z';

// bad
// (compare to above, and try to spot the mistake)
var items = getItems(),
 goSportsTeam = true;
 dragonball = 'z';

// good
var items = getItems();
var goSportsTeam = true;
var dragonball = 'z';

Objects

Use the literal syntax for object creation.

// bad
var item = new Object();

// good
var item = {};

Don’t use reserved words [http://es5.github.io/#x7.6.1] as keys.

// bad
var superman = {
 default: { clark: 'kent' },
 private: true
};

// good
var superman = {
 defaults: { clark: 'kent' },
 hidden: true
};

Do not use quotes for properties, it is only needed for screening reserved
words which we are not supposed to use.

Arrays

Use the literal syntax for array creation.

// bad
var items = new Array();

// good
var items = [];

Use Array#push instead of direct assignment to add items to an array.

var someStack = [];

// bad
someStack[someStack.length] = 'abracadabra';

// good
someStack.push('abracadabra');

To convert an array-like object to an array, use Array#slice.
If you need to copy an array, use slice as well.

function trigger() {
 var args = Array.prototype.slice.call(arguments);
 ...
}

var length = items.length;
var itemsCopy = [];
var index;

// bad
for (index = 0; index < length; index++) {
 itemsCopy[index] = items[index];
}

// good
itemsCopy = items.slice();

Strings

Use single-quotes for strings. When programmatically building a string
use Array#join instead of string concatenation

// bad
var template = '<div class="whatever">' +
 message +
'</div>';

// good
var template = [
 '<div class="whatever">',
 message,
 '</div>'
].join('');

If you have a complicated string buildup it’s always better to use javascript
templating instead. That way templates could have their own files with proper
syntax highlighting and pre-compilation build step.

Functions

Function expressions:

// anonymous function expression
var anonymous = function () {
 return true;
};

// named function expression
var named = function named() {
 return true;
};

// immediately-invoked function expression (IIFE)
(function () {
 console.log('Welcome to the Internet. Please follow me.');
})();

Tend to avoid anonymous function expressions, try to always use named ones,
it will save you a lot of pain going through stack traces and debugging in
general.

Never declare a function in a non-function block (if, while, etc). Assign
the function to a variable instead. Browsers will allow you to do it, but
they all interpret it differently, which is really bad news.

// bad
if (currentUser) {
 function test() {
 console.log('Nope.');
 }
}

// good
var test;
if (currentUser) {
 test = function test() {
 console.log('Yup.');
 };
}

Never name a parameter arguments. This will take precedence over the arguments
object that is given to every function scope. It is also a
reserved word [http://es5.github.io/#x7.6.1].

// bad
function nope(name, options, arguments) {
 // ...stuff...
}

// good
function yup(name, options, args) {
 // ...stuff...
}

Prefer early returns.

// bad
function returnLate(foo) {
 var value;

 if (foo) {
 value = 'foo';
 } else {
 value = 'quux';
 }
 return value;
}

// good

function returnEarly(foo) {
 if (foo) {
 return 'foo';
 }

 return 'quux';
}

// bad
function doThingsWithComponent(element) {
 if (element.length) {
 // do things
 }
}

// good
function doThingsWithComponent(element) {
 if (!element.length) {
 return false;
 }

 // do things
}

Functions context

Prefer Function#bind over $.proxy(function (), scope).

doAsync(function () {
 this.fn();
}.bind(this));

If the context argument is available, it is preferred.

// bad
[1, 2, 3].forEach(function (number) {
 this.fn(number);
}.bind(this));

// good
[1, 2, 3].forEach(function (number) {
 this.fn(number);
}, this);

If assigning the current context to a variable, the variable should be named
that:

var that = this;
doAsync(function () {
 that.fn();
});

Properties

Use dot notation when accessing properties.

var luke = {
 jedi: true,
 age: 28
};

// bad
var isJedi = luke['jedi'];

// good
var isJedi = luke.jedi;

Use subscript notation [] only when accessing properties with a variable.

var luke = {
 jedi: true,
 age: 28
};

function getProp(prop) {
 return luke[prop];
}

var isJedi = getProp('jedi');

Hoisting

Variable declarations get hoisted to the top of their scope, but their
assignment does not.

// we know this wouldn't work (assuming there
// is no notDefined global variable)
function example() {
 console.log(notDefined); // => throws a ReferenceError
}

// creating a variable declaration after you
// reference the variable will work due to
// variable hoisting. Note: the assignment
// value of `true` is not hoisted.
function example() {
 console.log(declaredButNotAssigned); // => undefined
 var declaredButNotAssigned = true;
}

// The interpreter is hoisting the variable
// declaration to the top of the scope,
// which means our example could be rewritten as:
function example() {
 var declaredButNotAssigned;
 console.log(declaredButNotAssigned); // => undefined
 declaredButNotAssigned = true;
}

Anonymous function expressions hoist their variable name, but not the
function assignment.

function example() {
 console.log(anonymous); // => undefined

 anonymous(); // => TypeError anonymous is not a function

 var anonymous = function() {
 console.log('anonymous function expression');
 };
}

Named function expressions hoist the variable name, not the function name or
the function body.

function example() {
 console.log(named); // => undefined

 named(); // => TypeError named is not a function

 superPower(); // => ReferenceError superPower is not defined

 var named = function superPower() {
 console.log('Flying');
 };
}

// the same is true when the function name
// is the same as the variable name.
function example() {
 console.log(named); // => undefined

 named(); // => TypeError named is not a function

 var named = function named() {
 console.log('named');
 }
}

Function declarations hoist their name and the function body.

function example() {
 superPower(); // => Flying

 function superPower() {
 console.log('Flying');
 }
}

For more information on hoisting refer to JavaScript Scoping & Hoisting [http://www.adequatelygood.com/JavaScript-Scoping-and-Hoisting.html] by
Ben Cherry [http://www.adequatelygood.com].

Types

Type Casting and Coercion

Strings:

// => this.reviewScore = 9;

// bad
var totalScore = this.reviewScore + '';

// good
var totalScore = '' + this.reviewScore;

// bad
var totalScore = '' + this.reviewScore + ' total score';

// good
var totalScore = this.reviewScore + ' total score';

Numbers:
Use parseInt for Numbers and always with a radix for type casting.

var inputValue = '4';

// very bad
var val = new Number(inputValue);

// bad
var val = +inputValue;

// bad
var val = inputValue >> 0;

// bad
var val = parseInt(inputValue);

// ok
var val = Number(inputValue);

// good
var val = parseInt(inputValue, 10);

Booleans:

var age = 0;

// bad
var hasAge = new Boolean(age);

// ok
var hasAge = Boolean(age);

// good
var hasAge = !!age;

Comparison Operators & Equality

Use === and !== over == and !=.

Comparison operators are evaluated using coercion with the ToBoolean method
and always follow these simple rules:

	Objects evaluate to true

	Undefined evaluates to false

	Null evaluates to false

	Booleans evaluate to the value of the boolean

	Numbers evaluate to false if +0, -0, or NaN, otherwise true

	Strings evaluate to false if an empty string ‘’, otherwise true

if ([0]) {
 // true
 // An array is an object, objects evaluate to true
}

	Use shortcuts.

 // bad
 if (name !== '') {
 // ...stuff...
 }

 // good
 if (name) {
 // ...stuff...
 }

 // bad
 if (collection.length > 0) {
 // ...stuff...
 }

 // good
 if (collection.length) {
 // ...stuff...
 }

More info in `Javascript Equality Table <https://dorey.github.io/JavaScript-Equality-Table/>`_

	Condition statements should not contain assignment operations:

// bad
var foo;
if ((foo = bar()) > 0) {
 // ...
}

// good
var foo = bar();
if (foo > 0) {
 // ...
}

	Logical operators should not be used for conditional branching:

// bad
condition && actionIfTrue() || actionIfFalse();

// good
if (condition) {
 actionIfTrue();
} else {
 actionIfFalse();
}

	Conditions longer than the maximum line length should be divided as in the example:

// good
if (longCondition ||
 anotherLongCondition &&
 yetAnotherLongCondition
) {
 // ...
}

	The ternary operator should be written as in the examples:

var x = a ? b : c;

var y = a ?
 longButSimpleOperandB : longButSimpleOperandC;

var z = a ?
 moreComplicatedB :
 moreComplicatedC;

	If a statement is longer than the maximum line length, it is split into
several lines and properly indented.

	Closing parentheses should be on a new line with the indentation of the
current block statement. Tend to do the same with object properties.

DoSomethingThatRequiresALongFunctionName(
 veryLongArgument1,
 argument2,
 argument3,
 argument4
);
anotherStatement;

jQuery

Variables

Do not prefix jQuery variables with $.
Always cache jQuery lookups.

// bad
function setSidebar() {
 $('.sidebar').hide();
 $('.sidebar').css({
 'background-color': 'pink'
 });
}

// bad
function setSidebar() {
 var $sidebar = $('.sidebar');
 $sidebar.hide();
 $sidebar.css({
 'background-color': 'pink'
 });
}

// good
function setSidebar() {
 var sidebar = $('.sidebar');
 sidebar.hide();
 sidebar.css({
 'background-color': 'pink'
 });
}

Ajax

Prefer promise based $.ajax calls over callback passing into settings object.

// bad
$.ajax('/url', {
 dataType: 'json',
 success: function () {
 },
 error: function () {
 },
 complete: function () {
 }
});

// good
$.ajax({
 urls: '/url',
 dataType: 'json',
}).done(function myAjaxDone () {
 ...
}).fail(function myAjaxFailed () {
 ...
}).always(function myAjaxIsCompleted () {
 ...
});

The nice thing about this is that the return value of $.ajax is now a deferred promise that can be bound to
anywhere else in your application. So let’s say you want to make this ajax call from a few different places.
Rather than passing in your success function as an option to the function that makes this ajax call, you can just have
the function return $.ajax itself and bind your callbacks with done, fail, then, or whatever. Note that always
is a callback that will run whether the request succeeds or fails. done will only be triggered on success.

It is also easier to process when you need to pass multiple success callbacks with few chained .done calls (which can
also be conditional) than passing array of functions into success property.

...
getItems: function getItems(options) {
 var opts = $.extend({
 url: '/items/',
 dataType: 'json',
 ...
 }, options);
 return $.ajax(opts);
}
...

// and then in the app
this.getItems().done(function (products) {
 ...
})

// and in all the different places
this.getItems({ url: '/items/categories/12' }).done(function (products) {
 ...
});

Common patterns

Loops

Use for-in only for iterating over keys in an Object, never over an Array.

Naming conventions

Refer to guidelines. Use leading underscore to denote private methods/properties.
The only place where it’s allowed to use single letter variable is in event callbacks:

// bad
$('div.elem').on('click', function (clickEvent) {
 ...
});

// good
$('.js-element').on('click', function (e) {
 ...
});

Events

When attaching data payloads to events (whether DOM events or something more
proprietary like Backbone events), pass a hash instead of a raw value.
This allows a subsequent contributor to add more data to the event payload
without finding and updating every handler for the event. For example, instead of:

// bad
$(this).trigger('listingUpdated', listing.id);

...

$(this).on('listingUpdated', function(e, listingId) {
 // do something with listingId
});

prefer:

// good
$(this).trigger('listingUpdated', { listingId: listing.id });

...

$(this).on('listingUpdated', function(e, data) {
 // do something with data.listingId
});

Templates

When passing data to JS templates (using underscore.js / window.tmpl by J. Resig) -
always pass an object that has only one property, and that property is the data you need.

Consider this template:

<% if (people) { %>
 <%= people %>
<% } %>

// bad
var markup = tmpl(template, { prop1: true, prop2: '1' });

This will throw a ReferenceError because these template engines use
with underneath. Instead do this:

<% if (addon.people) { %>
 <%= addon.people %>
<% } %>

// good
var markup = tmpl(template, {
 addon: {
 prop1: true,
 prop2: '1'
 }
});

You will have explicit scope without any unexpected behaviours.

Classes

It is a common pattern when creating javascript components to save all the ui
elements under a common namespace. It is also a common mistake to declare an
object called ui on a class.

// bad
var Widget = new Class({
 ui: {
 oneElement: null,
 anotherElement: null
 },
 initialize: function (container, options) {
 this._buildUI(container);
 },
 _buildUI: function (container) {
 this.container = $(container);

 // another bad thing
 this.ui.oneElement = $('.js-one-element');
 this.ui.anotherElement = $('.js-another-element');
 }
});

There are several problems. The ui object is declared on prototype in this
case, and as with all complex types is javascript we are working with a
reference to the value. That means that the same ui object will be shared across
all instances of the class, which in turn will mean that you won’t be able to
use several instances on the page.

// good
var Widget = new Class({
 initialize: function (container, options) {
 this._buildUI(container);
 },
 _buildUI: function (container) {
 this.container = $(container);
 this.ui = {
 // scoping widget's moving parts under the same container is a good pattern as well
 oneElement: $('.js-one-element', this.container),
 anotherElement: $('.js-another-element', this.container)
 };
 }
});

We do not always know how the widget will be used. Even if “it’s only gonna
be on this page and it’s gonna be this particular instance” seems like a valid
reason not to change - it never is. We should always strive for making
components independent and reusable, it’s usually not a big effort
(especially if you think about before writing the widget) and it can solve a
lot of problems for you in the future.

Passing data to components

Avoid instantiating components in inline scripts. Instead pass the data to
the components through data attributes.

Avoid spreading options into multiple data attributes, as it might happen
that two different javascript components live on the same DOM node and require
an option with the same name. Instead use json notation.

Bad:

<div class="js-component-1 js-component-2"
 data-something="false" {# for component 2 #}
 data-value="for component 1"
 data-value="for component 2"> {# aw maaan #}
 Sad panda :(
</div>

Imagine in this case component 1 functionality is significantly affected by an
option that is meant for component 2. Also if they share the same option
property name, such as value - sad panda.

Good:

<div class="js-component-first js-component-second"
 data-component-first='{
 "value": "for component 1"
 }'
 data-component-second='{
 "value": "for component 2",
 "something": false
 }'>
 Happy panda!
</div>

Passing the data to the components is also very straightforward. This way you
have the same initialisation method for all existing instances of the widget
even if they have different options.

var componentElements = $('.js-component-2');
var defaults = {
 x: 0,
 y: 0,
 something: true
};
componentElements.each(function () {
 var componentElement = $(this);
 var options = $.extend({}, defaults, componentElement.data('component-second'));
 new ComponentSecond(componentElement, options);
}):

Magic numbers

	Avoid magic numbers. Try to parametrise or use constants.

// bad
setTimeout(function () {
 if (failed && count < 5) {
 count++;
 return;
 }
 // or do stuff
}, 3000);

// better
var POLLING_TIMEOUT = 3000;
var MAX_FAILURES_COUNT = 5;

setTimeout(function () {
 if (failed && count < MAX_FAILURES_COUNT) {
 count++;
 return;
 }
 // or do stuff
}, POLLING_TIMEOUT);

switch (e.keyCode) {
 case keyCodes.ENTER:
 case keyCodes.SPACE:
 x();
 break;
 case keyCodes.TAB
 case keyCodes.ESCAPE:
 y();
 break;
 default:
 z();
}

ECMAScript 5

Use where appropriate. Use array methods for working with arrays, but don’t
use them when working with array-like objects such as jQuery collections.
For them use $.fn.each instead.

Prefer Array#forEach over for () {} loop.

var fighters = [
 {
 name: 'Jonny Cage',
 dead: true
 },
 {
 name: 'Kung Lao',
 dead: true
 },
 {
 name: 'Raiden',
 dead: false
 }
];

// bad
var i;
var l = fighters.length;

for (; i < l; i++) {
 console.log(fighters[i].name + ' ' + (fighters[i].dead ? 'lost' : 'did not lose'));
}

// good
fighters.forEach(function (fighter) {
 console.log(fighter.name + ' ' + (fighter.dead ? 'lost' : 'did not lose'));
});

More info on ES5 compatibility here [http://kangax.github.io/compat-table/es5/]

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

 	Coding Style

Styles

General

Formatting, nesting, ordering and everything else is covered by
Guidelines

Main problem with CSS

There are two types of problems in CSS: cosmetic problems and architectural
problems. Cosmetic problems—issues like vertical centering or equal-height
columns—usually engender the most vocal complaints, but they’re almost
never showstoppers. They’re annoying, sure, but they don’t break the build.

Philip Walton Side Effects in CSS [http://philipwalton.com/articles/side-effects-in-css/]

Since CSS is global, every rule you write or override has the potential to
break completely unrelated things. With that in mind, try to avoid selectors
that are too unspecific (e.g.
type selectors [https://developer.mozilla.org/en-US/docs/Web/CSS/Type_selectors]
or overly specific selectors, like .nav > ul > li > a. That selector
is going to be extremely painful to extend and override if there’s going to be
a “special” list item for example. That also brings us to

Selector performance

It is always said that css selectors performance is not that important and
there are no “easy-to-follow” rules for fixing it. But just to reiterate, main points:

	If your project is sufficiently big and complex or really dynamic, css
selector performance may play a major role in the perceived rendering performance.

	Selectors are interpreted by the browser from right to left, meaning
.my-class > * will select all the elements on the page all the time and
check if their immediate parent has a class my-class. If there would be
no > it would traverse the tree all the way up for every element, which
is not very good. It is true that browsers do optimize things like this, but
you should always check for yourself.

JS selectors

We use js- prefixed selectors for referencing DOM Nodes from javascript.
That means that these classes have a pure functional purpose and styles should
never be applied to them. Same type of widget could be easily represented
by completely different sets of markup.

Magic numbers

Tend not to use magic numbers in CSS. Let’s say you want to position an element
in a specific place. Try to be agnostic of the environment and don’t use values
that are too specific.

.nav {
 height: 30px;
}

// bad
.dropdown {
 // it works, but imagine we are going to change
 // the height of the nav. we'll need to go all over the css and change
 // the value now
 top: 35px;
}

// good
.dropdown {
 top: 100%;
 margin-top: 5px;
}

Another example of magic numbers could be computed values. Let’s say you have a
component that is created on top of existing component, like a bootstrap styled
select.

// bad
.custom-select {
 height: 38px;
 padding: 14px 17px;
}

// much better
.custom-select {
 height: $input-height-base - 2px;
 padding: ($padding-base-vertical - 1px) ($padding-base-horizontal - 1px);
}

Avoid magic numbers like the plague. [http://csswizardry.com/2012/11/code-smells-in-css/].

Sass

Sass or SCSS

That one is a no-brainer. We use SCSS flavor because it is closer to CSS and
easier to pick up for everyone. It also resolves subtle issues with indentation.

Nesting

Optimal nesting level is 2. You can go up to 4 levels (scss-lint rule), but try
not to. Overused nesting usually means that something is wrong with the code.

Extends

In general, try to avoid extend unless you know exactly what you are doing.
Only use @extend when the rulesets that you are trying to DRY out are inherently
and thematically related.

Do not force relationships that do not exist: to do so will create unusual
groupings in your project, as well as negatively impacting the source order
of your code.

http://csswizardry.com/2014/11/when-to-use-extend-when-to-use-a-mixin/

Color manipulation

When using alpha transparent colors keep in mind that rgba supports passing
colors, so you can do things like this:

// bad
color: rgba(0, 0, 0, 0.85);

// good
color: rgba(black, 0.85);
color: rgba(#000, 0.85);
color: rgba($color, 0.85);

Autoprefixer

For generating vendor prefixes one should use Autoprefixer instead of relying
on mixins. That way we reduce sass compilation time and ensure that we have only
prefixes that we actually need. As a good side effect we will use actual
standard CSS syntax.

Bootstrap

When using settings/_bootstrap.scss make sure that you have all the
variables overwritten in the file, because overriding only some of them can
lead to subtle bugs like this [https://gist.github.com/vxsx/598a1312cd036fa94095]:

// this is what happens in the bootstrap/_variables.scss
$line-height-computed: 20px !default;
$padding-base-vertical: 6px !default;

// and this is a computed property from bootstrap, 34px by default
$input-height-base: ($line-height-computed + ($padding-base-vertical * 2) + 2) !default;

// now what we want to do is to override line-height-computed in our settings file
$line-height-computed: 23px;

Now we would expect that $input-height-base will be 37px, but it will be
still 34px because computed properties are already calculated and won’t
be changed. Since bootstrap components dimensions are all interconnected
to these computed variables we should always have the full settings file.
Order matters too.

Media queries

In general when using media queries with bootstrap variables, use appropriate
values for appropriate type of a query.

// bad
@media (min-width: $screen-sm-max) {
 ...
}

@media (max-width: $screen-sm-min) {
 ...
}

// good
@media (min-width: $screen-md-min) {
 ...
}

@media (max-width: $screen-xs-max) {
 ...
}

These values differ only by 1 pixel, but it’s a very important one.

Open for discussion

	Screenshot regression testing

	autoprefixer implementation

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

Tips and Tricks

Note

There are several tips & tricks we found over the time that are worth
mentioning.

Floating

When using float: left;, display: block; is not required anymore as
every element which is floated automatically gets the block state.
This does not apply to sub-elements.

Hidden Attribute

With modern HTML5 we can use the hidden="hidden" attribute which is a
softer version of display: none;. This state can easily be overwritten
using CSS or JavaScript. As such the attribute is ideal for hiding elements
which are later displayed through JavaScript to prevent jumping behaviours.
But be aware of the current support [http://caniuse.com/#search=hidden].

Image Optimisation

Images are the number one source of optimisation when it comes to file size.
Optimise images using tools like CodeKit [https://incident57.com/codekit/],
ImageOptim [https://imageoptim.com/] or our internal
Gulp [http://gulpjs.com/] command: gulp images.

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

Contribution

Note

You are very welcome improving this boilerplate for Aldryn and your
everyday use, especially the documentation always needs love. Feel free to
fork and send us pull requests and follow the guidelines from within this
section.

Code of Conduct

	Ensure code validates against or own guidelines

	Write documentation about what you are doing

	If you are not sure, just ask - join our community #aldryn on Freenode [http://freenode.net/]

Documentation

To extend and run the documentation, you will need
Python [https://www.python.org/downloads/] and
Virtualenv [https://virtualenv.pypa.io/en/latest/installation.html]
installed on your computer. You also need
Git [http://git-scm.com/book/en/v2/Getting-Started-Installing-Git]
and a GitHub account obviously.

In addition, follow the steps underneath to get them running:

	clone the repository using git clone https://github.com/aldryn/aldryn-boilerplate-bootstrap3.git

	navigate to the documentation through cd aldryn-boilerplate-bootstrap3/docs

	run make install to install additional requirements

	run make run to let the server run

Now you can open http://localhost:8000 on your favourite browser and start
changing the rst files within docs/.

You need to be aware of
reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html]
to format the documentation properly.

Guidelines

	Always start paths with a / and leave the trailing slash.

	Leave two spaces before a title.

	Write “Django”, “django CMS” or “Aldryn”.

	Write names properly: Sass, Bootstrap, JavaScript instead of sass (or SASS), bootstrap and javascript.

	Additional guidelines from django CMS [http://docs.django-cms.org/en/develop/contributing/contributing.html#documentation-markup] apply.

Pull Requests

Before starting to work on issues or features, please mind the branching model:

	master is used for hotfix releases (1.1.x)

	develop is used for features and issues (1.x.x)

Everything that is merged to develop will be released within the next proper
release (1.x.x). Major releases (x.0.0) will have their own branches but are
always merged to develop before releasing to master.

A pull request needs the consent of two developers familiar with this repository
to be merged.

Releases

	Adapt the CHANGELOG.rst [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/blob/master/CHANGELOG.rst]

	Adapt AUTHORS.rst [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/blob/master/AUTHORS.rst] if required

	Bump version in boilerplate.json [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/blob/master/boilerplate.json]

	Create a GitHub tag [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/tags]

	Add the release notes on the GitHub tag [https://github.com/aldryn/aldryn-boilerplate-bootstrap3/releases]

	Build new tag on readthedocs.org [https://readthedocs.org/projects/aldryn-boilerplate-bootstrap3/]

	Run bash tools/release.sh before release on Aldryn [http://control.aldryn.com]

	Run aldryn boilerplate upload to release on Aldryn [http://control.aldryn.com]

	Test, inform, present

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Aldryn Boilerplate Bootstrap 3 3.3.0 documentation

Index

 Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_images/editor-wysiwyg.png
Text x

[« o] [E3cusruans - | [Heaang 1 - | [EHEETE) [A- @ | @ G
[

B1u=~zE
Text Lead
- Text Left .
The Next Gian! ., e r Mankind
Curabitur non nulla sit amet| Text Right llis quis ac lectus.

Donec sollicitudin molestie malesuada. Nulla quis lorem ut libero malesuada
feugiat.

body ht

Syl Text Gancel

_static/toolbar-page-types.png
django[@Y eXplorer

Home Cms » Pages:

Seleci Recover deleted pay

] s

History Language

Add Page

Page settings ...

Templates

Advanced setiings ..
Publishing dates ...

Hide in navigation N p |O re yoU r

Unpublish page

Delete page ... bitur non nulla sit amet nisl temp
ke sollicitudin molestie malesuad
° Nulla quis lorem ut libero malesuada fi

_static/toolbar-templates.png
X PLO N,

Page setting

Advanced settings . skdcbagicft

sidebar right

home template
EX | Vid in nvigaton
Inherit the template of the nearest ancy

Unpublish page

Publishing dates ...

Curabitur nciEEEE L TR pus convallis quis ac lectus.
DUEbIle Save as Page Type ...

Nulla quis lorem ut libero malesuada feugiat.

_static/up.png

_static/minus.png

_static/editor-wysiwyg.png
Text x

[« o] [E3cusruans - | [Heaang 1 - | [EHEETE) [A- @ | @ G
[

B1u=~zE
Text Lead
- Text Left .
The Next Gian! ., e r Mankind
Curabitur non nulla sit amet| Text Right llis quis ac lectus.

Donec sollicitudin molestie malesuada. Nulla quis lorem ut libero malesuada
feugiat.

body ht

Syl Text Gancel

_static/down-pressed.png

_images/toolbar-page-types.png
django[@Y eXplorer

Home Cms » Pages:

Seleci Recover deleted pay

] s

History Language

Add Page

Page settings ...

Templates

Advanced setiings ..
Publishing dates ...

Hide in navigation N p |O re yoU r

Unpublish page

Delete page ... bitur non nulla sit amet nisl temp
ke sollicitudin molestie malesuad
° Nulla quis lorem ut libero malesuada fi

_images/toolbar-templates.png
X PLO N,

Page setting

Advanced settings . skdcbagicft

sidebar right

home template
EX | Vid in nvigaton
Inherit the template of the nearest ancy

Unpublish page

Publishing dates ...

Curabitur nciEEEE L TR pus convallis quis ac lectus.
DUEbIle Save as Page Type ...

Nulla quis lorem ut libero malesuada feugiat.

search.html

 Navigation

 		
 index

 		Aldryn Boilerplate Bootstrap 3 3.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Divio AG.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

